$C_{23}H_{26}N_4O_5$

1.461 (3) 1.404 (3) 1.486 (5) 1.487 (5) 1.467 (3) 1.351 (3) 1.211 (3) 1.339 (3) 1.447 (3)

1.502 (4) 1.386 (5)

1.388 (4)

1.384 (4)

1.379 (6) 1.373 (5) 1.380 (4)

120.0 (4) 120.4 (4) 119.8 (4)

118.9 (3)

120.7 (3)

120.4 (3)

120.5 (3)

120.4 (5) 107.9 (3) 114.9 (2)

125.7 (3) 111.8 (2)

122.4 (2)

124.0 (3)

120.5 (2)

110.7 (3)

104.6 (3)

125.0 (2) 124.5 (2)

115.5 (2)

107.1 (2)

104.4 (3)

108.3 (3)

103.9 (3)

109.5 (2)

118.7 (2)

123.4 (2) 123.6 (2)

111.2 (2)

125.2 (2)

116.7 (2) 106.6 (2) 120.7 (3) 120.1 (3) 106.7 (3) 105.0 (3) 105.1 (2) 112.3 (2)

119.4 (2) 124.6 (3) 110.4 (2)

119.2 (2) 120.0 (3) 120.2 (3) 119.9 (3)

120.2 (3) 120.4 (3)

-170.7 (2) -178.8 (3)

-10.5 (4) -163.5 (3)

101.1 (3) -26.8 (3) 16.1 (4) 0.1 (4)

-18.0 (3)

28.5 (3) 177.2 (2)

179.7 (2)

43.4 (3)

93.6 (4)

N(3) = C(13)	1 464 (3)
N(3) = N(4)	1 415 (3)
$\Gamma(3) = \Gamma(4)$	1.512 (4)
C(13) = C(14)	1.513 (4)
C(14) = C(13)	1.515 (4)
$\mathcal{L}(13)$ $\mathcal{L}(14)$	1.471 (3)
N(4) = C(10)	1.344 (4)
C(16) = O(4)	1.206 (3)
C(16) = O(5)	1.344 (2)
O(5) - C(17)	1.431 (4)
C(17)—C(18)	1.487 (4)
C(18)—C(19)	1.369 (5)
C(18)—C(23)	1.366 (5)
C(19)—C(20)	1.374 (4)
C(20)—C(21)	1.357 (6)
C(21)—C(22)	1.353 (6)
C(22)—C(23)	1.380 (4)
C(2) - C(1) - C(6)	118.9 (2)
C(1) - C(2) - C(3)	121.0 (3)
C(2) - C(3) - C(4)	120.2 (3)
C(3) - C(4) - C(5)	1179(2)
C(3) = C(4) = C(5)	121 1 (2)
C(5) = C(4) = C(7)	120.0 (2)
C(3) - C(4) - C(7)	120.9(2)
C(4) - C(3) - C(0)	121.7 (3)
C(1) - C(6) - C(5)	120.2 (3)
C(4) - C(7) - O(1)	106.8 (2)
C(7)—O(1)—C(8)	114.7 (2)
O(1)—C(8)—O(2)	125.1 (3)
O(1)—C(8)—N(1)	111.1 (2)
O(2) - C(8) - N(1)	123.8 (2)
C(8)—N(1)—C(9)	122.9 (2)
C(8) = N(1) = N(2)	120.2 (2)
C(9) = N(1) = N(2)	111.6 (2)
N(1) - C(9) - C(10)	102 9 (2)
O(3) = C(12) = N(3)	1240(2)
C(12) = N(3) = C(13)	127.0(2)
C(12) = N(3) = C(13)	122.7(2)
C(12) = N(3) = N(4)	105.1(2)
C(13) = N(3) = N(4)	103.4 (2)
N(3) = C(13) = C(14)	103.0 (2)
C(13) - C(14) - C(15)	104.9 (2)
C(14) - C(15) - N(4)	103.4 (2)
N(3) - N(4) - C(15)	111.2 (2)
N(3) - N(4) - C(16)	120.6 (2)
C(15) - N(4) - C(16)	121.8 (2)
N(4) - C(16) - O(4)	123.7 (2)
N(4) - C(16) - O(5)	111.2 (2)
O(4)—C(16)—O(5)	125.0 (2)
C(16)—O(5)—C(17)	116.3 (2)
O(5)—C(17)—C(18)	107.0 (3)
C(17)—C(18)—C(19)	122.0 (3)
C(17)—C(18)—C(23)	119.9 (3)
C(9) - C(10) - C(11)	105.0 (2)
C(10) - C(11) - N(2)	103.8 (2)
N(1) - N(2) - C(11)	105.1 (2)
N(1) - N(2) - C(12)	113.4 (2)
C(11) - N(2) - C(12)	121.3 (2)
N(2) - C(12) - O(3)	124.8 (2)
N(2) - C(12) - N(3)	111.1(2)
C(19) - C(18) - C(23)	118.0 (2)
C(18) - C(19) - C(20)	121 0 (4)
C(19) = C(20) = C(21)	1199(3)
C(20) - C(21) - C(22)	120.2 (3)
C(21) = C(21) = C(22)	120.2(3)
C(21) - C(22) - C(23)	117.7 (4)
C(18) - C(23) - C(22)	121.1 (5)
	170.9 (2)
C(4) - C(7) - O(1) - C(8)	- 1/9 8 1/1
U(7) = U(1) = U(8) = N(1)	172 5 (2)
1011 (200 N(1) N(2)	172.5 (2)
	172.5 (2) 11.4 (3)
O(1) - C(8) - N(1) - N(2) O(1) - C(8) - N(1) - C(9) O(1) - O(1) - O(1)	172.5 (2) 172.5 (2) 11.4 (3) 163.5 (2)
O(1)— $C(8)$ — $N(1)$ — $I(2)O(1)$ — $C(8)$ — $N(1)$ — $C(9)C(8)$ — $N(1)$ — $N(2)$ — $C(12)$	172.5 (2) 112.5 (2) 11.4 (3) 163.5 (2) -93.2 (3)
O(1) - C(8) - N(1) - N(2) O(1) - C(8) - N(1) - C(9) C(8) - N(1) - N(2) - C(12) N(1) - N(2) - C(11) - C(10) N(2) - C(11) - C(10)	172.5 (2) 112.5 (2) 11.4 (3) 163.5 (2) -93.2 (3) 33.4 (3)
$\begin{array}{l} 0(1)-C(8)-N(1)-N(2)\\ 0(1)-C(8)-N(1)-C(9)\\ C(8)-N(1)-N(2)-C(12)\\ N(1)-N(2)-C(11)-C(10)\\ N(2)-C(11)-C(10)-C(9)\\ 0(10)-C(10)-C(9)\\ 0(10)-C(10)-C(10)\\ 0(10)-C(10)-C(10)\\ 0(10)-C(10)-C(10)\\ 0(10)-C(10)-C(10)\\ 0(10)-C(10)\\ 0($	$\begin{array}{c} 173.6 (2) \\ 172.5 (2) \\ 11.4 (3) \\ 163.5 (2) \\ -93.2 (3) \\ 33.4 (3) \\ -32.0 (3) \\ \end{array}$
$\begin{array}{l} 0(1) - C(8) - N(1) - N(2) \\ 0(1) - C(8) - N(1) - C(9) \\ C(8) - N(1) - N(2) - C(12) \\ N(1) - N(2) - C(11) - C(10) \\ N(2) - C(11) - C(10) - C(9) \\ C(11) - C(10) - C(9) - N(1) \\ \end{array}$	$\begin{array}{c} 172.5 (2) \\ 172.5 (2) \\ 11.4 (3) \\ 163.5 (2) \\ -93.2 (3) \\ 33.4 (3) \\ -32.0 (3) \\ 18.1 (3) \end{array}$
$\begin{array}{l} 0(1)-C(8)-N(1)-N(2)\\ 0(1)-C(8)-N(1)-C(9)\\ C(8)-N(1)-N(2)-C(12)\\ N(1)-N(2)-C(11)-C(10)\\ N(2)-C(11)-C(10)-C(9)\\ C(11)-C(10)-C(9)-N(1)\\ C(10)-C(9)-N(1)-N(2)\\ \end{array}$	$\begin{array}{c} 172.5 (2) \\ 172.5 (2) \\ 11.4 (3) \\ 163.5 (2) \\ -93.2 (3) \\ 33.4 (3) \\ -32.0 (3) \\ 18.1 (3) \\ 2.5 (3) \end{array}$
$\begin{array}{l} 0(1) - C(8) - N(1) - N(2) \\ 0(1) - C(8) - N(1) - C(9) \\ C(8) - N(1) - N(2) - C(12) \\ N(1) - N(2) - C(11) - C(10) \\ N(2) - C(11) - C(10) - C(9) \\ C(11) - C(10) - C(9) - N(1) \\ C(10) - C(9) - N(1) - N(2) \\ C(9) - N(1) - N(2) - C(11) \end{array}$	$\begin{array}{c} 172.5 \ (2) \\ 112.5 \ (2) \\ 11.4 \ (3) \\ 163.5 \ (2) \\ -93.2 \ (3) \\ 33.4 \ (3) \\ -32.0 \ (3) \\ 18.1 \ (3) \\ 2.5 \ (3) \\ -22.9 \ (3) \end{array}$
$\begin{array}{l} 0(1) - C(8) - N(1) - N(2) \\ 0(1) - C(8) - N(1) - C(9) \\ C(8) - N(1) - N(2) - C(12) \\ N(1) - N(2) - C(11) - C(10) \\ N(2) - C(11) - C(10) - C(9) \\ C(11) - C(10) - C(9) - N(1) \\ C(10) - C(9) - N(1) - N(2) \\ C(9) - N(1) - N(2) - C(11) \\ N(1) - N(2) - C(12) - N(3) \end{array}$	$\begin{array}{c} 172.5 \ (2) \\ 112.4 \ (3) \\ 163.5 \ (2) \\ -93.2 \ (3) \\ 33.4 \ (3) \\ -32.0 \ (3) \\ 18.1 \ (3) \\ 2.5 \ (3) \\ -22.9 \ (3) \\ 178.2 \ (2) \end{array}$
$\begin{array}{l} 0(1)-C(8)-N(1)-N(2)\\ 0(1)-C(8)-N(1)-C(9)\\ C(8)-N(1)-N(2)-C(12)\\ N(1)-N(2)-C(11)-C(10)\\ N(2)-C(11)-C(10)-C(9)\\ C(11)-C(10)-C(9)-N(1)\\ C(10)-C(9)-N(1)-N(2)\\ C(9)-N(1)-N(2)-C(11)\\ N(1)-N(2)-C(12)-N(3)\\ N(2)-C(12)-N(3)-N(4) \end{array}$	$\begin{array}{c} 172.5 (2) \\ 112.5 (2) \\ 11.4 (3) \\ 163.5 (2) \\ -93.2 (3) \\ 33.4 (3) \\ -32.0 (3) \\ 18.1 (3) \\ 2.5 (3) \\ -22.9 (3) \\ 178.2 (2) \\ -173.0 (2) \end{array}$
$\begin{array}{l} 0(1)-C(8)-N(1)-N(2)\\ 0(1)-C(8)-N(1)-C(9)\\ C(8)-N(1)-N(2)-C(12)\\ N(1)-N(2)-C(11)-C(10)\\ N(2)-C(11)-C(10)-C(9)\\ C(11)-C(10)-C(9)-N(1)\\ C(10)-C(9)-N(1)-N(2)\\ C(9)-N(1)-N(2)-C(11)\\ N(1)-N(2)-C(12)-N(3)\\ N(2)-C(12)-N(3)-N(4)\\ N(2)-C(12)-N(3)-C(13)\\ \end{array}$	$\begin{array}{c} 172.5 (2) \\ 112.5 (2) \\ 11.4 (3) \\ 163.5 (2) \\ -93.2 (3) \\ 33.4 (3) \\ -32.0 (3) \\ 18.1 (3) \\ 2.5 (3) \\ -22.9 (3) \\ 178.2 (2) \\ -173.0 (2) \\ -42.4 (3) \end{array}$

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

N(3) - N(4) - C(15) - C(14)	1.9 (3)	-16.0 (4)
N(4)-C(15)-C(14)-C13()	18.5 (3)	-0.1 (3)
C(15) - C(14) - C(13) - N(3)	-31.9 (3)	15.2 (5)
C(14)—C(13)—N(3)—N(4)	33.0 (3)	-25.2 (4)
C(13)—N(3)—N(4)—C(15)	-22.3 (3)	26.4 (3)
N(3)—N(4)—C(16)—O(5)	15.5 (3)	-16.1 (3)
N(4)-C(16)-O(5)-C(17)	168.6 (3)	-176.2 (3)
C(16) - O(5) - C(17) - C(18)	-179.1 (3)	162.5 (3)

Program used to solve the structure: *SHELXS86* (Sheldrick, 1990). Refinement was by full-matrix least-squares methods using *SHELX76* (Sheldrick, 1976). Molecular graphics: *ORTEPII* (Johnson, 1976).

The authors thank D. Bayeul for technical assistance.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: NA1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Benedetti, E. (1979). Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 6, edited by B. Weinstein, pp. 105–184. New York: Marcel Dekker.
- Dutta, A. S. & Morley, J. S. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 1712–1720.
- Gante, J. (1989). Synthesis, pp. 405-413.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lecoq, A., Boussard, G., Marraud, M. & Aubry, A. (1992). Tetrahedron Lett. 33, 5209-5212.
- Lecoq, A., Boussard, G., Marraud, M. & Aubry, A. (1993). Biopolymers, 33, 1051–1059.
- Niedrich, H. (1967). Chem. Ber. 100, 3273-3282.
- Niedrich, H. & Köller, G. (1974). J. Prakt. Chem. 316, 729-740.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1995). C51, 690-697

Five 3,3'-Bridged 2,2'-Dithiophenes

TULLIO PILATI

CNR-CSRSRC, c/o Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy

(Received 28 June 1994; accepted 13 September 1994)

Abstract

The crystal structures of the compounds 4*H*-cyclopenta-[2,1-*b*:3,4-*b'*]dithiophene, $C_9H_6S_2$ (I), spiro[4*H*-cyclopenta[2,1-*b*:3,4-*b'*]dithiophene-4,1'-cyclopentane], C_{13} - $H_{12}S_2$ (II), 4*H*,6*H*-dithieno[3,2-*c*:2',3'-*e*]oxepine, C_{10} - H₈OS₂ (III), 6*H*-4,7,8,10-tetrahydrodithieno[3,2-g: 2',3'-i][1,5]dioxacycloundecene, C₁₃H₁₄O₂S₂ (IV) and 4,6,7,9,10,12-hexahydrodithieno[3,2-*i*:2',3'-*k*][1,4,7]tri-oxacyclotridecene, C₁₄H₁₆O₃S₂ (V), have been determined at room temperature. For low values of the S— C—C—S torsion angle [(I), (II) and (III)], the C—C bond length between the rings is *ca* 0.02 Å shorter than the values found for (IV) and (V), where torsion angles are *ca* 90°; this is in agreement with the change of the conjugation between the thiophene rings.

Comment

Polyheterocycles are a growing class of advanced materials for electronics and non-linear optics; among them, poly-2,5-thiophene derivatives are particularly interesting due to their chemical stability. There are many papers (Roncali, 1992, and references therein) studying the relationships between the structure of the monomeric thiophene unit and the electrical and spectroscopic properties of the resulting polymer. Recently, Benincori et al. (1994) synthesized and studied the properties of polymers of bithiophene and terthiophene monomers showing a well defined torsion angle (θ_{SCCS}) between the thiophene rings. As part of this project it was planned to determine the variation of the electrical properties of the polymers with the introduction of various 3,3'-bridges on the 2,2'-bithiophene monomer, with particular attention to the variation of θ_{SCCS} and, consequently, to the conjugation between the thiophene rings. On this basis, we decided to undertake the crystallographic study of the five compounds (I)-(V).

(I) is the fundamental 3,3'-bridged 2,2'-bithiophene structure and its crystal structure has been previously determined at 113 K (Koster, van Bolhuis & Visser, 1970, hereinafter KBV); we decided to redetermine this structure at room temperature to make the comparison between the bond lengths of the different structures more reliable. The structure of (I) is confirmed: no phase transition has been found between 113 K and room temperature. Figs. 1-5 show ORTEP plots (Johnson, 1976) of (I) (molecule a), (II) (molecule a), (III) (molecule b), (IV) and (V), respectively. It can be seen that the numbering scheme of the dithiophene group is the same for all compounds in order to to make the comparison of chemically equivalent parameters easier. When the asymmetric unit holds more than one molecule [(I), (II) and (III)], the chemically equivalent atoms are marked with a suffix a, b or c. As expected, for (I), due to the large increase of thermal libration with temperature, an apparent shortening of bond distances with respect to the KBV data has been found; the mean bond-length variation involving heavy atoms is 0.012 Å. Using the rigid-body assumption, fitting the thermal parameters using the LST model (Schomaker & Trueblood, 1968), the following eigenvalues of libration tensor have been obtained: 0.0076(5), 0.0033(1), 0.0022(1) and 0.0083(5), 0.0024(1), 0.0015(2) rad² for molecules (Ia) and (Ib), respectively; this corresponds to a mean bond-length correction of 0.006 Å, which is clearly too small. For non-rigid molecules such as (IV), (V) and possibly (III), the corrections are even less reliable. For these reasons, only homogeneous data can be compared, obtained at the same temperature and uncorrected for thermal libration. Table 11 reports the mean values of some chemically equivalent parameters of the five compounds listed above and of additional two-bridged dithiophenes, namely 7,9,10,12-tetrahydrodithieno[3.2-f: 2',3'-h[1,4]dioxecene (VI) and 7,9,10,12,19,21,22,-24-octahydrotetrathieno[3,2-f:2',3'-h:3'',2''-p:2''',3'''-r]-[1,4,11,14]tetraoxacycloicosene (VII), recently studied by Zimmer et al. (1993). The seven structures can be divided into two groups: (I), (II) and (III) with synperiplanar arrangement of thiophenes and the remaining with synclinal or anticlinal conformation. In the first group, where the torsion angles θ_{SCCS} are less than 11.8°, the mean inter-ring bond length d_{C5-C6} ranges between 1.441 and 1.450 Å, while in the second, with θ_{SCCS} between 45.1 and 117.4°, d_{C5-C6} is 1.461–1.469 Å. The increase of θ_{SCCS} , the lengthening of d_{C5-C6} and the reduction of the conjugation between the thiophene ring are connected phenomena; together with the difference in electric properties of the 3,3'bridge, they can explain the variation of some chemical and physical properties such as infrared and Raman spectra, redox potential and conductivity of doped polymers of these compounds (see Benincori et al., 1994). The strain induced by the presence of the short bridge

(--C11--) in (I) and (II) is also evident in Table 11; in fact, these two compounds show a very large ($ca \ 20^\circ$) variation of the angles C4--C5--C6 and S1--C5--C6 in opposite directions and a significant shortening of the

Fig. 1. ORTEPII (Johnson, 1976) plot of (I) (molecule a). Displacement ellipsoids are at the 20% probability level and H atoms are not drawn to scale.

Fig. 2. ORTEPII (Johnson, 1976) plot of (II) (molecule b). Displacement ellipsoids are at the 20% probability level and H atoms are not drawn to scale.

Fig. 3. ORTEPII (Johnson, 1976) plot of (III) (molecule a). Displacement ellipsoids are at the 20% probability level and H atoms are not drawn to scale.

Fig. 4. ORTEPII (Johnson, 1976) plot of (IV). Displacement ellipsoids are at the 20% probability level and H atoms are not drawn to scale.

Fig. 5. ORTEPII (Johnson, 1976) plot of (V). Displacement ellipsoids are at the 20% probability level and H atoms are not drawn to scale.

S1—C5 bond length with respect to all the other structures.

The packing of (I) and (II) is ruled only by residual forces; particularly impressive is the packing of (II), shown in Fig. 6, which has three independent molecules in the asymmetric unit; the projection along the *c* axis has the appearance of two gears; the first gear consists of six molecules *c*, around the site symmetry 3, the second of three molecules *a* and three molecules *b* located around the threefold axis. In spite of the complex crystal packing, the differences between the three independent molecules are not particularly relevant. For (I) the two independent molecules are also very similar, whereas for (III) there are further differences, such as the modulus of θ_{SCCS} which is 7.7 (2) and 11.8 (2)° in molecules *a* and *b*, respectively.

Fig. 6. Packing of (II) projected down the c axis. H atoms are omitted for clarity.

Experimental

The synthesis of compounds (I)-(V) is described in Benincori et al. (1995).

l

1

Compound (I)

Crystal data

$C_9H_6S_2$
$M_r = 178.266$
Monoclinic
$P2_1/c$
a = 12.653 (1) Å
b = 11.233 (1) Å
c = 11.388 (1) Å
$\beta = 98.40 (1)^{\circ}$
V = 1601.2 (3) Å ³
Z = 8
$D_x = 1.479 \text{ Mg m}^{-3}$

Data collection Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3126 measured reflections 3126 independent reflections 2274 observed reflections $[I_o > 2\sigma(I_o)]$

Refinement

Refinement on F R = 0.031wR = 0.035S = 1.9512274 reflections 248 parameters All H-atom parameters refined $w = 2F_o \mathrm{Lp} / [\sigma^2(I_o)$ $+ (0.02I_o)^2]^{1/2}$ $(\Delta/\sigma)_{\rm max} = 0.04$

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 8.1 - 14.6^{\circ}$ $\mu = 0.562 \text{ mm}^{-1}$ Room temperature Crystal sealed in Lindemann glass capillary to prevent sublimation $0.30 \times 0.30 \times 0.28$ mm Colourless: became yellowish $\theta_{\rm max} = 26^{\circ}$ $h = -15 \rightarrow 15$ ^ k

$= 0 \rightarrow 10$
$= 0 \rightarrow 10$
standard reflection
frequency: 360 min
intensity decay: negligible

 $|\Delta \rho| = 0.22 \text{ e} \text{ Å}^{-3}$ Extinction correction: Stout & Jensen (1968) Extinction coefficient: $3.9(2) \times 10^{-6}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2A, 2.3.1 and 2.2C)

Table	1.	Fract	ional	atomic	coordinates	and	equivalent
i	sot	ropic a	displa	cement	parameters ((Ų) j	for (I)

$U_{eq} = (1/3) \sum_i \sum_i U_{ii} a^* a^* \mathbf{a}_i \mathbf{a}_i$

	- 4	• • • • • • • • • •	— <u> </u>	ijij:	
	x	у		Z	U_{eq}
S1a	0.31929 (5)	0.0232	5 (5)	0.45912 (5)	0.0561 (2
S7a	0.53241 (4)	0.2904	9 (5)	0.46326 (5)	0.0520 (2
C2a	0.2170 (2)	-0.0230	(2)	0.3515 (2)	0.0587 (7
C3a	0.2103 (2)	0.0417	$\dot{\alpha}$	0.2512(2)	0.0527 (7
C4a	0.2892(2)	0 1315	(2)	0.2590(2)	0.0425 (6
C5a	0.3540(2)	0 1320	(2)	0.3668 (2)	0.0403 (6
Cha	0.3340 (2)	0.1520	(2)	0.3660 (2)	0.0403 (0
Cla	0.4522(2)	0.2237	(2)	0.3009(2)	0.0392 (0
Coa	0.3331(2)	0.3737	(2)	0.3373(2)	0.0519 (7
C94	0.4807(2)	0.3789	(2)	0.2542 (2)	0.0502 (7
Clua	0.4160 (2)	0.2828	(2)	0.2595 (2)	0.0417(7
CHa	0.3221 (2)	0.2285	(2)	0.1806 (2)	0.0492 (6
S1 <i>b</i>	0.06874 (4)	0.4153	3 (5)	0.28951 (5)	0.0519 (2
S7b	-0.00778 (5)	0.6561	2 (5)	0.02972 (5)	0.0533 (2
C2b	0.1848 (2)	0.3933	(2)	0.3878 (2)	0.0499 (7
C3b	0.2621 (2)	0.4730	(2)	0.3734 (2)	0.0457 (7
C4b	0.2282 (2)	0.5550	(2)	0.2825 (2)	0.0412 (6
C5b	0.1257 (2)	0.5349	(2)	0.2285 (2)	0.0400 (6
C6b	0.0974(2)	0.6221	(2)	0.1369(2)	0.0419 (6
C86	0.0634(2)	0.7729	(2)	-0.0190(2)	0.0556 (7
COb	0.0034(2)	0.7727	(2)	-0.0190(2)	0.0550 (7
C10h	0.1024(2)	0.7637	(2)	0.0433(2)	0.0347 (7
	0.1826 (2)	0.0908	(2)	0.1331(2)	0.0455 (6
CHD	0.2741 (2)	0.6614	(2)	0.2270 (2)	0.0504 (7
		,		. 9	
Table	2. Selected	a geometr	ıc par	ameters (A	, °) for (1)
Sla—C2a		1.727 (2)	S1 <i>b</i> -	-C2b	1,729 (2)
S1a-C5a		1.710(2)	S1b-	-C5h	1 718 (2)
\$7a-C6a		1713(2)	\$7h	C6b	1 712 (2)
\$7a-C8a		1.719(2)	57b-	Rh	1 728 (2)
C_{a}		1 346 (3)	C2h	-C3h	1.720(2)
$C_{2a} = C_{3a}$		1.340 (3)	C20-	-C30	1.334 (3)
$C_{Ja} = C_{a}$		1.413 (3)	C30-	-C40 C64	1.403 (3)
C4a - C3a		1.373 (3)	C40-	-0.50	1.370(3)
C4a—CII	а	1.505 (3)	C4b-	-C11b	1.508 (3)
C5a—C6a		1.444 (3)	C5b-	-C6b	1.438 (3)
C6a-C10	a	1.370 (3)	C6b-	C10b	1.372 (3)
C8a—C9a		1.352 (3)	C8 <i>b</i>	–C9b	1.353 (3)
C9a-C10	а	1.409 (3)	C9b-	C10b	1.408 (3)
C10a-C1	1 <i>a</i>	1.510 (3)	C10b	C11b	1.510 (3)
C2 - C1	<u> </u>	007(1)	C2	011 OF	00.4.43
C_{2a} —SIa	C3a	90.7(1)	C20-	-SID - CSD	90.4 (1)
Coa—S/a	$-c_{8a}$	90.7(1)	C60-	-S/bC8b	90.6(1)
SIa-C2a	C3a	112.8 (2)	\$1 <i>b</i> -	-C2 <i>b</i> C3 <i>b</i>	112.8 (2)
C2a—C3a	—C4a	112.1 (2)	C2 <i>b</i>	C3 <i>b</i> C4 <i>b</i>	112.0 (2)
C3a—C4a	C11a	137.2 (2)	C3b-	C4 <i>b</i> C11 <i>b</i>	137.2 (2)
C3aC4a	C5a	112.5 (2)	C3b-	C4 <i>b</i> C5 <i>b</i>	112.9 (2)
C5a-C4a	C11a	110.3 (2)	C5b-	-C4bC11b	109.9 (2)
S1a-C5a	C4a	111.9 (2)	S1 <i>b</i>	-C5bC4b	111.9 (2)
C4a-C5a	C6a	108.9 (2)	C4b-	-C5b-C6b	109.4 (2)
Sla-C5a		139 2 (2)	S1b-	-C5h-C6h	1387(2)
\$7a-C6a		138 8 (2)	\$7b_	-C6b-C5b	139.0 (2)
C5a_C6a		109 1 (2)	C54		100 0 (2)
S70_ C60	-C10a	1110(2)	576		1110(2)
570-C00		111.7 (2)	5/0-	-C00-C100	111.9(2)
3/a-U8a	-C9a	112.8(2)	3/0-	-180-190	112.7 (2)
C8a-C9a		112.0 (2)	C80-	-C90-C10b	112.0(2)
C6a-C10	a—C9a	112.6 (2)	C6b-	-C106-C96	112.7 (2)
C9a-C10	a—C11a	137.2 (2)	C9 <i>b</i>	C10bC11b	137.3 (2)
C6a-C10	a—C11a	110.1 (2)	C6b-	-C10bC11b	110.0 (2)
C4a-C11	aC10a	101.6 (2)	C4 <i>b</i>	-C11bC10b	101.7 (2)

Compound (II)

Crystal data

 $C_{13}H_{12}S_2$ $M_r = 232.36$ Trigonal PЗ a = 21.792 (4) Å b = 21.792 (4) Å c = 12.566 (2) Å $\alpha = 90.00^{\circ}$

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta=9.7{-}17.9^\circ$ $\mu = 0.4079 \text{ mm}^{-1}$ Room temperature Irregular prism

V = 510	58 (2) Å ³		0.034 \times 0.030 \times	0.022 mm	C4c	0.1715 (1)	-0.0487	(1) 0.6676 (2)	0.0379 (9)
Z = 18			Golden yellow		C5c	0.1212(1)	-0.0333	$\begin{array}{ccc} (1) & 0.7017 (2) \\ (1) & 0.7054 (2) \end{array}$	0.0395 (10)
$D_r = 1.$	3439 Mg m^{-3}	i	•			0.0808(1) 0.0335(1)	-0.0755	(1) 0.7934(2) (1) 0.9515(2)	0.0383(9) 0.0510(11)
~	U				C9c	0.0843 (1)	-0.1595	(1) 0.9082(2)	0.0470 (10)
Data co	ollection				C10c	0.1157 (1)	-0.1171 ((1) 0.8176 (2)	0.0372 (9)
Enraf_N	Jonius CAD-4		$R_{int} = 0.022$		C11 <i>c</i>	0.1729 (1)	-0.1049	(1) 0.7368 (2)	0.0377 (9)
diffra	ctometer		$A_{\rm mn} = 25^{\circ}$		C12c	0.2441 (1)	-0.0861	(1) 0.7875 (2) 0.9107 (2)	0.0538 (11)
0/20 so			$b = 0 \longrightarrow 22$		C13c	0.2377(1)	-0.1560	$\begin{array}{ccc} (1) & 0.819/(3) \\ (1) & 0.7505(2) \end{array}$	0.0642(11)
0/20 SC	alls	•	$h = 0 \longrightarrow 22$ $k = 0 \longrightarrow 13$		C140	0.1783(1) 0.1559(1)	-0.1731	(1) 0.7303(2) (1) 0.6761(2)	0.0473 (10)
Absorp	tion correction	•	$k = 0 \longrightarrow 13$		0.50	0.1207 (1)		(1) 0.0101 (2)	010112(10)
none	1 9	•	$l = -14 \rightarrow 12$						
6637 m	easured reflect	tions	I standard reflect	ion	Tabl	e 4 Selecter	l oeometri	c parameters (Å	$^{\circ}$) for (II)
6045 in	dependent refl	ections	frequency: 360	mın	1401		e geometri)] 01 (11)
3498 ol	bserved reflect	ions	intensity decay	: negligible	Sla—C2	la	1.716 (2)	C4b—C11b	1.517 (3)
[<i>I</i> _o >	$\cdot 2\sigma(I_o)]$				51a-C3	a Sa	1.707 (2)	C30-C00	1.447 (3)
					S7a—C8	Sa la	1.722 (2)	C8bC9b	1.355 (2)
Refinen	nent				C2a-C3	3a	1.352 (3)	C9b-C10b	1.418 (3)
D.C.	Г		14 1 0 01 - 8 -	-3	C3a—C4	4a	1.421 (3)	C10b—C11b	1.516 (2)
Rennen	nent on F		$ \Delta \rho = 0.21 \text{ e A}$	-	C4a—C	5a	1.365 (2)	S1c-C2c	1.719 (2)
R = 0.0	34		Extinction correct	ion: Stout	C4a—C	11 <i>a</i>	1.503 (3)	Sic - CSc	1./11 (2)
wR = 0	.035		& Jensen (1968	3)		5a 10a	1.448 (3)	$S/c = C \delta c$	1.708 (2)
S = 1.6	54		Extinction coeffic	ient:	C8a-C9	9a	1.355 (2)	C_{2c} — C_{3c}	1.354 (3)
3498 re	eflections		7.7 (6) $\times 10^{-8}$		C9a—C	10a	1.421 (3)	C3c - C4c	1.411 (3)
551 par	ameters		Atomic scattering	factors	C10a-C	C11a	1.518 (2)	C4c—C5c	1.366 (3)
All H-a	tom parameter	rs	from Internatio	nal Tables	S1b-C2	26	1.712 (2)	C4c—C11c	1.515 (3)
refin	ad		for Y-ray Crys	allography	S1b—C5	5 <i>b</i>	1.711 (2)	C5c—C6c	1.449 (3)
w = 2F	$\int dr dr \sigma^2(I)$		(1074 Vol IV)	Tablas	S7b—C6	5 <i>b</i>	1.707 (2)	C6c—C10c	1.370 (3)
W - 21	$\frac{\partial Lp}{\partial x} \frac{\partial r}{\partial x} \partial$		(19/4, 001, 10, 001, 001, 0000, 000, 000, 000, 000, 0000, 000, 000, 000, 000, 000, 000, 000, 000		S76-C8	36	1.717 (2)	C8c - C9c	1.359 (3)
+	$(0.02I_o)^2$].72		2.2A, 2.3.1 and	1 2.2C)	C2b-C	3D 4 L	1.355 (3)	C9c - C10c	1.409 (3)
$(\Delta/\sigma)_{n}$	$_{\rm max} = 0.15$				C30-C4	+0 56	1.408 (3)	C102 - C112	1.525(3) 1.517(3)
					C+0 C,	50	1.505 (2)	0140 0150	1.517(5)
					C2a—\$1	la—C5a	90.6 (1)	S7b—C6b—C5b	138.3 (2)
T-11- 2 Functional stands conditions and conduction		C6a—S7	7a—C8a	90.5 (1)	C5b—C6b—C10b	108.7 (2)			
Table 5. Fractional atomic coordinates and equivalent		Sla—C2	2aC3a	112.9 (2)	S7b—C6b—C10b	113.0 (2)			
isotropic displacement parameters (Å ²) for (II)		C2a - C	3a—C4a	111.9 (2)	S7b-C8b-C9b	113.0 (2)			
		-				4a—C11a 4a—C5a	130.5(2)	C80-C90-C108	112.0(2) 111.6(2)
	$U_{eq} =$	= (1/3) ሬ _i ሬ	$_{j}U_{ij}a_{i}^{*}a_{j}^{*}\mathbf{a}_{i}\mathbf{a}_{j}$.		C5a—C4	4a—C11a	111.7 (2)	C9b-C10b-C11b	137.6 (2)
	r	ν	7	Um	Sla-C	5a—C4a	112.7 (2)	C6b-C10b-C11b	110.9 (2)
S1a	-0.56533	-0.23274	0.40489	0.0487 (3)	C4a—C	5a—C6a	108.6 (2)	C4b-C11b-C10b	100.7 (2)
S7a	-0.56931 (3)	-0.34072 (3) 0.14458 (6)	0.0491 (3)	S1a—C5	5a—C6a	138.7 (2)	C2c—S1c—C5c	90.4(1)
C2a	-0.4967 (1)	-0.1702 (1) 0.4799 (2)	0.0530 (10)	S7a—C6	ba—C5a	138.2 (2)	C6 <i>c</i> —S7 <i>c</i> —C8 <i>c</i>	90.4 (1)
C3a	-0.4324 (1)	-0.1550 (1) 0.4427 (2)	0.0477 (10)	C5a—C	ba = C10a	108.6 (2)	S1c - C2c - C3c	112.8 (2)
C4a	-0.4379(1)	-0.1957 (1) 0.3511 (2)	0.0387 (8)	57a-C	a = C a	113.1(2)	$C_{2c} - C_{3c} - C_{4c}$	112.1(2) 136.7(2)
C5a	-0.5068 (1)	-0.2395 (1	0.3223(2)	0.0367 (9)	C80-C	a = C 10a	112.7 (2)	$C_3 - C_4 - C_5 $	130.7(2)
C0a C8a	-0.5031(1) -0.5029(1)	-0.3419(1	0.2293(2)	0.0579(8)	C6a—C	10a—C9a	111.1 (2)	C5c-C4c-C11c	111.2 (2)
C9a	-0.4375(1)	-0.2970 (1	0.0110(2)	0.0488 (11)	С9а—С	10aC11a	138.1 (2)	S1c-C5c-C4c	112.6 (2)
C10a	-0.4396 (1)	-0.2602 (1) 0.2030 (2)	0.0397 (9)	С6а—С	10a—C11a	110.8 (2)	C4c—C5c—C6c	109.0 (2)
C11a	-0.3876 (1)	-0.2044 (1) 0.2793 (2)	0.0410 (9)	C4a—C	11a—C10a	100.4 (2)	S1c-C5c-C6c	138.4 (2)
C12a	-0.3317 (1)	-0.1363 (1) 0.2223 (2)	0.0557 (12)	C2bS1	b = C5b	90.6(1)	S/c-C6c-C5c	138.3 (2)
C13a	-0.2742 (1)	-0.1516 (2) 0.1876 (3)	0.0734 (14)	S16-C	/0	90.4 (1) 113 0 (2)	$C_{C} = C_{C} = C_{C$	108.7 (2)
C14a	-0.2788(1)	-0.2089 (2) 0.2006 (3)	0.0708 (13)	C2b-C2	3b-C4b	113.0(2)	57c-C8c-C9c	112.9(2)
C15a S1b	-0.5592 (1)	-0.2209 (1	0.3308(2) 3) 0.09478(6)	0.0331(11) 0.0486(3)	C3b-C4	4b-C11b	137.1 (2)	C8c - C9c - C10c	112.2 (2)
S7b	0.66407(3)	0.23250 (3) 0.35527 (6)	0.0470 (3)	C3b-C4	4b—C5b	112.3 (2)	C6c—C10c—C9c	111.5 (2)
C2b	0.4943 (1)	0.1710 (1) 0.0212 (2)	0.0538 (11)	C5b—C4	4 <i>b</i> —C11 <i>b</i>	110.6 (2)	C9c—C10c—C11c	137.6 (2)
C3b	0.4737 (1)	0.1054 (1) 0.0595 (2)	0.0473 (10)	S1b—C5	5 <i>b</i> —C4 <i>b</i>	112.2 (2)	C6c—C10c—C11c	110.8 (2)
C4b	0.5122 (1)	0.1078 (1) 0.1509 (2)	0.0380 (9)	C4b-C	5 <i>b</i>	109.1 (2)	C4c—C11c—C10c	100.3 (2)
C5b	0.5611 (1)	0.1757 (1) 0.1791 (2)	0.0379 (8)	S10-C3	0-00	138.7 (2)		
C6b	0.5990(1)	0.1739(1) 0.2725 (2)	0.0364 (9)	Comm	and (III)			
Cob	0.0390(1)	0.1030(1	0.4200(2)	0.0309(12)	Comp				
C10b	0.5742(1)	0.1047 (1	0.3004(2)	0.0370 (8)	Crysta	l data			
C11b	0.5160(1)	0.0550(1) 0.2253 (2)	0.0386 (10)	Силна	75-		Mo Ka radiation	1
C12b	0.5327 (1)	0.0021 (1) 0.1695 (2)	0.0495 (10)	M = 2	2.52		$\lambda = 0.71073$ Å	•
C13b	0.5128 (2)	-0.0572 (1) 0.2499 (3)	0.0634 (12)	Monco	linio		Cell nerometers	from 25
C14b	0.4559 (2)	-0.0572 (1) 0.3205 (3)	0.0685 (14)					1011 25
C15b	0.4462(1)	0.0040 (1) 0.2823 (2)	0.0515(11)	r21/C	0 0 0 · · · · · · · · ·		renections	
S10 S7c	0.11342 (4)	0.02733 ($\begin{array}{ccc} 3 \\ 3 \\ \end{array} & \begin{array}{c} 0.82210(0) \\ 0.88315(6) \\ \end{array}$	0.0485 (3)	a = 14	.030 (2) A		$\theta = 10.7 - 17.0^{\circ}$	-1
C2c	0.1817(1)	0.0323 (1) 0.5420 (2)	0.0566 (13)	b = 9.0)09 (2) A		$\mu = 0.4940 \text{ mm}^{-1}$	-
C3c	0.2061 (1)	-0.0108 (1) 0.5747 (2)	0.0479 (10)	<i>c</i> = 16	.306 (5) Å		Room temperatu	re

TULLIO PILATI

$\beta = 113.49 (2)^{\circ}$	Ir	regular and part	ially	S7a—C8a	1.704 (2)	\$7 <i>b</i> —C8 <i>b</i>	1.701 (2)
V = 1890.2 (8) Å ³		rounded prism	•	012a—C11a	1.421 (2)	012b—C11b	1.427 (2)
Z = 8	0.	$38 \times 0.32 \times 0.32$	25 mm	C_{2a} C_{3a}	1.411 (3)	012b	1.411 (3)
$D_{\rm r} = 1.4639 {\rm Mg m}^-$	-3 Y	ellow		C3a—C4a	1.419 (2)	C3b—C4b	1.420 (3)
				C4a—C5a	1.364 (2)	C4b—C5b	1.366 (1)
Data collection				C4a—C13a	1.504 (3)	C4b—C13b	1.498 (3)
Enrof Nonius CAD	л Р.	- 0.018		C5a-C6a	1.450 (2)	C5b-C6b	1.450 (2)
diffractomator	··+ Λi Δ	= 0.010		C8a - C9a	1.308 (3)	C8b-C9b	1.300 (2)
		max = 20		C9a-C10a	1.409 (3)	C9bC10b	1.410 (3)
0/20 scans	n h	$= 0 \rightarrow 1/$		C10a—C11a	1.497 (4)	C10b—C11b	1.492 (2)
Absorption correctio	κ	$= 0 \rightarrow 11$		C2a—S1a—C5a	92.0 (1)	C2b—S1b—C5b	91.8 (1)
	1	$= -20 \rightarrow 18$		C6a—\$7a—C8a	91.7 (1)	C6b—S7b—C8b	92.0(1)
3848 measured rene	ctions 1	standard reflect	ion	C11aO12aC13a	113.7 (1)	C11b-O12b-C13b	113.1 (2)
3/01 independent re	nections	rrequency: 360	min	$S1a \rightarrow C2a \rightarrow C3a$	111.3(2) 113.7(2)	SID-C2D-C3D C7b-C3b-C4b	111.7 (2)
2406 observed reflect	ctions	intensity decay	: negligible	C3a—C4a—C13a	121.1 (2)	C3b-C4b-C13b	121.3 (2)
$[I_o > 2\sigma(I_o)]$				C3a—C4a—C5a	112.0 (2)	C3b—C4b—C5b	112.1 (2)
				C5a—C4a—C13a	126.9 (2)	C5b—C4b—C13b	126.6 (2)
Refinement				S1a - C5a - C4a	110.8 (1)	S1b-C5b-C4b	110.5(1)
Definement on F	17	$\Lambda = 0.21 = \lambda^{-1}$	-3	S1a - C5a - C6a	129.3 (2)	S1b-C5b-C6b	129.0(2)
P = 0.022	4 E	$\Delta p_{\parallel} = 0.21 \text{ C A}$	tion: Staut	S7a-C6a-C5a	120.9 (1)	\$7 <i>b</i> —C6 <i>b</i> —C5 <i>b</i>	121.5 (1)
K = 0.032	Ľ	R Janson (106)		C5a—C6a—C10a	128.3 (2)	C5b-C6b-C10b	127.9 (2)
WK = 0.050 S = 1.941	E	& Jensen (190	o) Janti	\$7a—C6a—C10a	110.8 (1)	\$7 <i>b</i> C6 <i>b</i> C10 <i>b</i>	110.5 (1)
5 = 1.641	E	$5.2(4) \times 10^{-2}$		S/a - C8a - C9a	111.8 (2)	S70-C80-C90	111.7 (2)
2400 renections		$5.2(4) \times 10^{-1}$	c ,	C6a-C10a-C9a	112.1 (3)	C6b-C10b-C9b	112.5 (2)
300 parameters	A	tomic scattering	g factors	C9a-C10a-C11a	124.2 (2)	C9bC10bC11b	124.2 (2)
All H-atom paramet	ers	from Internatio	onal lables	C6a—C10a—C11a	123.8 (2)	C6b—C10b—C11b	123.3 (2)
refined		for X-ray Crys	tallography	012a—C11a—C10a	113.0 (2)	012b—C11b—C10b	112.7 (2)
$w = 2F_o Lp/[\sigma^-(I_o)]$		(1974, Vol. IV,	Tables	012a—C13a—C4a	115.1 (2)	0120	115.8 (2)
$+ (0.02I_o)^2]^{1/2}$		2.2A, 2.3.1 and	1 2.2C)				
$(\Delta/\sigma)_{\rm max} = 0.003$				Compound (IV)			
				Compound (17)			
				Crysiai aala			
Table 5. Fraction	al atomic co	ordinates and	equivalent	$C_{13}H_{14}O_2S_2$		Mo $K\alpha$ radiation	
isotropic displ	acement para	ameters (Ų) fo	or (III)	$M_r = 266.37$		$\lambda = 0.71073 \text{ Å}$	
				Monoclinic		Cell parameters fro	om 25
U_{eq}	$=(1/3)\Sigma_i\Sigma_jU$	$a_{ij}a_{i}^{*}a_{j}^{*}\mathbf{a}_{i}.\mathbf{a}_{j}.$		$P2_1/n$		reflections	
x	y	z	U_{eq}	a = 7.643 (2) Å		$\theta = 10.2 - 16.9^{\circ}$	
S1a -0.24609 (4)	0.35192 (7)	0.13717 (4)	0.0611 (2)	b = 24.604 (3) Å		$\mu = 0.3736 \text{ mm}^{-1}$	
S7a -0.29924 (5)	0.69592 (7)	0.09094 (4)	0.0701 (2)	c = 7.767 (1) Å		Room temperature	
$O_{12a} = -0.5328(1)$ $C_{2a} = -0.2682(2)$	0.4976 (2)	0.19257(8)	0.0591 (5)	$\beta = 115.29 (2)^{\circ}$		Prism	
C2a = -0.2002 (2) C3a = -0.3563 (2)	0.1883 (2)	0.1903 (1)	0.0605 (8)	V = 1320.6 (5) Å ³		$0.38 \times 0.38 \times 0.3$	0 mm
C4a -0.4092 (1)	0.3264 (2)	0.1693 (1)	0.0467 (6)	Z = 4		Yellow-brown	
C5a -0.3582 (1)	0.4277 (2)	0.1394 (1)	0.0438 (6)	$D_r = 1.3398 \text{ Mg m}$	1 ⁻³		
C6a = -0.3850(1)	0.5808 (2)	0.1126 (1)	0.0484 (7)		-		
C9a = -0.4735(2)	0.8023(3)	0.0033(2) 0.0722(2)	0.0765(12)				
C10a -0.4753 (2)	0.6542 (2)	0.0994 (1)	0.0551 (7)	Data collection			
C11a -0.5646 (2)	0.5855 (3)	0.1138 (1)	0.0652 (9)	Enraf-Nonius CAI	7-4	$\theta_{min} = 27.5^{\circ}$	
C13a = -0.5100(2)	0.3490 (3)	0.1797 (1)	0.0661 (8)	diffractometer		$b_{\text{max}} = 27.3$ $b = 0 \rightarrow 9$	
S7b 0.00317 (5)	0.11700 (8)	-0.16322(4)	0.0737(2) 0.0805(3)	$\theta/2\theta$ scans		$k = 0 \rightarrow 31$	
012b 0.2730(1)	-0.0809 (2)	0.07309 (9)	0.0689 (6)	Absorption correct	ion [.]	$l = -10 \rightarrow 9$	
C2b 0.1692 (2)	0.4134 (3)	0.0997 (2)	0.0815 (10)	none	ion.	1 standard reflection	m
C3b = 0.2308(2) C4b = 0.2135(1)	0.3020 (3)	0.1442 (2)	0.0717 (9)	3017 measured ref	lections	frequency: 360 r	nin
C4b = 0.2135(1) C5b = 0.1364(1)	0.1817 (2)	0.0947(1) 0.0112(1)	0.0505 (7)	3017 independent	reflections	intensity decay.	neolioihle
C6b 0.0907 (1)	0.0702 (2)	-0.0575 (1)	0.0514 (6)	2344 observed refl	ections	mensity decay.	negngiote
C8b -0.0186 (2)	-0.0642 (3)	-0.1944 (2)	0.0825 (11)	$[L > 2\sigma(L)]$	cetions		
C9b 0.0394 (2)	-0.1557(3)	-0.1282(2)	0.0682 (8)	[10 > 20(10)]			
C10b = 0.1024(1) C11b = 0.1753(2)	-0.0803(2) -0.1551(2)	-0.0494(1) 0.0335(2)	0.0523(7) 0.0674(8)				
C13b 0.2743 (2)	0.0302 (3)	0.1345 (2)	0.0731 (10)	Refinement			
		• •		Refinement on F		$ \Delta a = 0.15 = \lambda^{-3}$	
Table C. O. J. J. J		. 8) 6	R = 0.032		$\frac{ \Delta \mu }{ \Delta \mu } = 0.15 \text{ C A}$	m. Stout
Table 6. Selected	geometric pa	irameters (A, ^o) <i>for</i> (III)	m = 0.052 mR = 0.032		& Jancan (1069)	Jii. Stout
S1a—C2a	1.705 (3) S1	b—C2b	1.709 (2)	S = 2.007		Extinction coefficie	nt.
S1aC5a	1 779 (1) 61	hC5h	1 736 (1)	5 - 2.07/			
\$70-60	1.728(1) 51	10 C50	1 723 (1)	2344 reflections		$1.47(7) \times 10^{-6}$	
\$7 <i>a</i> —C6a	1.728 (1) S7	7b—C6b	1.723 (1)	2344 reflections		$1.47(7) \times 10^{-6}$	

211 parameters All H-atom parameters refined $w = 2F_o Lp/[\sigma^2(l_o) + (0.02I_o)^2]^{1/2}$ $(\Delta/\sigma)_{max} < 0.001$	Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2A, 2.3.1 and 2.2C)	 θ/2θ scans Absorption correction: none 2842 measured reflections 2842 independent reflections 2087 observed reflections 	$k = 0 \rightarrow 14$ $l = -18 \rightarrow 17$ 1 standard reflection frequency: 360 min intensity decay: negligible
$(\Delta/\sigma)_{\rm max} < 0.001$		$[I_o > 2\sigma(I_o)]$	

Table 7. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (IV)

$$U_{\text{eq}} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
S1	0.10207 (5)	0.35739 (2)	-0.13381 (5)	0.0568 (1)
S7	-0.22889 (5)	0.35134 (2)	0.15004 (6)	0.0619 (2)
012	0.3455(1)	0.44319 (4)	0.3387 (1)	0.0529 (3)
O16	 0.3201 (2) 	0.32357 (4)	0.5110(1)	0.0582 (3)
C2	0.2629 (2)	0.30620 (7)	-0.1020 (2)	0.0608 (5)
C3	0.3114 (2)	0.28112 (6)	0.0658 (2)	0.0547 (5)
C4	0.2177 (2)	0.30267 (5)	0.1744 (2)	0.0422 (4)
C5	0.0981 (2)	0.34495 (5)	0.0837 (2)	0.0410 (4)
C6	-0.0244 (2)	0.37871 (6)	0.1425 (2)	0.0443 (4)
C8	-0.2887 (2)	0.41224 (8)	0.2148 (2)	0.0752 (7)
C9	-0.1592 (2)	0.45076 (7)	0.2317 (2)	0.0697 (6)
C10	-0.0049 (2)	0.43231 (6)	0.1908 (2)	0.0516 (5)
C11	0.1666 (2)	0.46608 (6)	0.2111 (2)	0.0604 (5)
C13	0.3663 (2)	0.43828 (7)	0.5298 (2)	0.0611 (5)
C14	0.5291 (3)	0.39985 (8)	0.6358 (2)	0.0729 (7)
C15	0.5037 (2)	0.34511 (7)	0.5421 (2)	0.0615 (6)
C17	0.2531 (2)	0.28245 (6)	0.3689 (2)	0.0530 (5)

Refinement on F $ \Delta \rho = 0.40 \text{ e} \text{ Å}^{-3}$ $R = 0.035$ Extinction correction: Stout $wR = 0.046$ & Jensen (1968) $S = 2.024$ Extinction coefficient:2087 reflections $1.4 (2) \times 10^{-7}$	Refinement	
237 parametersAtomic scattering factorsAll H-atom parameters refinedfrom International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2A, 2.3.1 and 2.2C) $(\Delta/\sigma)_{max} = 0.24$ 2.2A, 2.3.1 and 2.2C)	Refinement on F R = 0.035 wR = 0.046 S = 2.024 2087 reflections 237 parameters All H-atom parameters refined w = 2F_oLp/[$\sigma^2(I_o)$ + (0.02 I_o) ²] ^{1/2} (Δ/σ) _{max} = 0.24	$ \Delta \rho = 0.40 \text{ e} \text{ Å}^{-3}$ Extinction correction: Stout & Jensen (1968) Extinction coefficient: 1.4 (2) × 10 ⁻⁷ Atomic scattering factors from <i>International Tables</i> for X-ray Crystallography (1974, Vol. IV, Tables 2.2A, 2.3.1 and 2.2C)

Table 9. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (V)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

Table 8. Sele	cted geometri	c parameters (Å.	$^{\circ}$) for (IV)		x	У	Z	U_{eq}
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S1	-0.22770 (7)	0.12441 (5)	0.20634 (4)	0.0477 (2)
S1C2	1.703 (1)	C4—C5	1.365(1)	S 7	-0.30744 (8)	0.12454 (5)	-0.03069(4)	0.0534 (2)
S1—C5	1.730(1)	C4C17	1.501 (2)	012	0.2434 (2)	0.2946 (1)	0.01204 (9)	0.0523 (5)
S7C6	1.726(1)	C5—C6	1.463 (2)	015	0.3168 (2)	0.5138(1)	0.0878 (1)	0.0648 (5)
S7—C8	1.704 (2)	C6-C10	1.362 (2)	018	0.0479 (2)	0.4812(1)	0.1920(1)	0.0579 (5)
O12C11	1.418 (1)	C8C9	1.336 (2)	C2	-0.2132 (3)	0.2227 (2)	0.2900(1)	0.0503 (7)
O12C13	1.429 (1)	C9C10	1.421 (2)	C3	-0.1534 (3)	0.3194 (2)	0.2653 (1)	0.0437 (6)
O16-C15	1.421 (2)	C10-C11	1.502 (2)	C4	-0.1168 (2)	0.3169 (2)	0.1752(1)	0.0372 (6)
016C17	1.422 (1)	C13-C14	1.498 (2)	C5	-0.1485 (2)	0.2147 (2)	0.1357 (1)	0.0378 (6)
C2C3	1.343 (2)	C14C15	1.503 (2)	C6	-0.1302(3)	0.1759 (2)	0.0451 (1)	0.0397 (7)
C3C4	1.422 (2)			C8	-0.1906 (3)	0.0975 (2)	-0.1113(2)	0.0587 (8)
C2-S1-C5	923(1)	\$1-05-06	110.0 (1)	C9	-0.0258 (3)	0.1249 (2)	-0.0814(2)	0.0548 (8)
C6C8	91.6(1)	57-C6 C5	119.0 (1)	C10	0.0125 (3)	0.1700 (2)	0.0089(1)	0.0435 (6)
S1	111.3 (1)	C5_C6_C10	178.8 (1)	C11	0.1884 (3)	0.2032 (2)	0.0578 (1)	0.0535 (8)
	113.8 (1)	S7_C6_C10	111 3 (1)	C13	0.4098 (3)	0.3358 (2)	0.0540 (2)	0.0650 (9)
C3_C4_C17	123.6 (1)	57_C8_C0	111.5 (1)	C14	0.4060 (3)	0.4169 (3)	0.1267 (2)	0.0673 (9)
C3	1120(1)		112.7 (2)	C16	0.2793 (3)	0.5872 (2)	0.1543 (2)	0.0544 (8)
C5-C4-C17	112.0(1) 124.4(1)	C6_C10_C9	113.7(2)	C17	0.0943 (3)	0.5850 (2)	0.1578 (2)	0.0521 (7)
S1C5C4	124.4(1)	$C_0 = C_1 0 = C_1 1$	124.8 (1)	C19	-0.0651 (3)	0.4171 (2)	0.1288(1)	0.0470 (7)
C4 C5 C6	120 4 (1)		124.0 (1)			. ,	. ,	
	130.4 (1)		123.5 (2)					

Table 10. Selected geometric parameters (Å, °) for (V)

Compound (V)		Table 10. Sel	ected geomet	ric parameters (Å	A, °) for (V)
Crystal data		S1—C2	1.708 (2)	C3C4	1.437 (2)
$C_{14}H_{16}O_3S_2$ $M_r = 296.40$ Monoclinic $P2_1/n$ $a = 7.999 (1) \text{ Å}$ $b = 12.060 (2) \text{ Å}$ $c = 14.930 (2) \text{ Å}$	Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 9.8-17.9^{\circ}$ $\mu = 0.3629 \text{ mm}^{-1}$ Room temperature	S1C5 S7C6 S7C8 O12C11 O15C14 O15C16 O18C19 C2C3	1.729 (2) 1.727 (2) 1.707 (3) 1.416 (2) 1.426 (3) 1.410 (3) 1.431 (3) 1.431 (2) 1.392 (2) 1.342 (3)	C4-C5 C4-C19 C5-C6 C6-C10 C8-C9 C9-C10 C10-C11 C13-C14 C16-C17	1.366 (3) 1.495 (3) 1.468 (2) 1.366 (3) 1.339 (3) 1.424 (3) 1.493 (3) 1.466 (4) 1.492 (3)
$\beta = 102.46 (1)^{\circ}$ $V = 1406.3 (4) Å^{3}$ Z = 4 $D_x = 1.3999 \text{ Mg m}^{-3}$	Prism $0.35 \times 0.33 \times 0.20$ mm Colourless	C2—S1—C5 C6—S7—C8 S1—C2—C3 C2—C3—C4 C3—C4—C19	91.9 (1) 91.9 (1) 112.0 (1) 113.3 (2) 123.3 (2)	S1C5C6 S7C6C5 C5C6C10 S7C6C10 S7C8C9	118.9 (2) 119.2 (2) 129.7 (2) 111.1 (1) 111.6 (2)
Data collection Enraf-Nonius CAD-4 diffractometer	$\theta_{\rm max} = 26^{\circ}$ $h = 0 \rightarrow 9$	C3C4C5 C5C4C19 S1C5C4 C4C5C6	111.5 (2) 125.0 (2) 111.3 (1) 129.7 (2)	C8-C9-C10 C6-C10-C9 C9-C10-C11 C6-C10-C11	113.9 (2) 111.5 (2) 123.6 (2) 124.9 (2)

Table 11. Selected values of chemically equivalent bond distances (Å), angles and absolute value of torsion angles (°) in compounds (I)–(VII)

E.s.d.'s of single values are in parentheses; if the reported value is a mean, the number in parentheses is the larger of the r.m.s. and the mean e.s.d.'s.

$(I)^a$	$(II)^a$	$(\Pi I)^a$	(IV) ^a
1.715 (2)	1.708 (2)	1.728 (3)	1.728 (2)
1.371 (3)	1.369 (3)	1.366 (3)	1.364 (2)
1.441 (3)	1.448 (3)	1.450 (2)	1.463 (2)
111.9 (2)	112.6 (2)	110.6(1)	110.9 (3)
138.9 (2)	138.4 (2)	120.6 (4)	119.5 (5)
109.1 (2)	108.8 (2)	128.7 (4)	129.8 (8)
4.3 (10)	2.6 (5)	9.7 (20)	109.6 (1)
(V) ^a	(VI) ^b	$(VII)^b$	
1.728 (2)	1.734 (4)	1.733 (4)	
1.366 (3)	1.363 (4)	1.365 (6)	
1.468 (2)	1.467 (3)	1.461 (5)	
111.2(1)	111.0 (2)	110.7 (3)	
119.0 (2)	119.1 (2)	120.3 (3)	
129.7 (2)	129.9 (2)	129.0 (3)	
56.8 (2)	45.1 (3)	61.1 (6)	
	$(1)^{a}$ 1.715 (2) 1.371 (3) 1.441 (3) 111.9 (2) 138.9 (2) 109.1 (2) 4.3 (10) (V)^{a} 1.728 (2) 1.366 (3) 1.468 (2) 111.2 (1) 119.0 (2) 129.7 (2) 56.8 (2)	$\begin{array}{cccc} ({\rm I})^a & ({\rm II})^a \\ 1.715 (2) & 1.708 (2) \\ 1.371 (3) & 1.369 (3) \\ 1.441 (3) & 1.448 (3) \\ 111.9 (2) & 112.6 (2) \\ 138.9 (2) & 138.4 (2) \\ 109.1 (2) & 108.8 (2) \\ 4.3 (10) & 2.6 (5) \\ \hline ({\rm V})^a & ({\rm VI})^b \\ 1.728 (2) & 1.734 (4) \\ 1.366 (3) & 1.363 (4) \\ 1.468 (2) & 1.467 (3) \\ 111.2 (1) & 111.0 (2) \\ 119.0 (2) & 119.1 (2) \\ 129.7 (2) & 129.9 (2) \\ 56.8 (2) & 45.1 (3) \\ \end{array}$	$\begin{array}{cccccc} ({\rm I})^a & ({\rm III})^a & ({\rm III})^a \\ 1.715 (2) & 1.708 (2) & 1.728 (3) \\ 1.371 (3) & 1.369 (3) & 1.366 (3) \\ 1.441 (3) & 1.448 (3) & 1.450 (2) \\ 111.9 (2) & 112.6 (2) & 110.6 (1) \\ 138.9 (2) & 138.4 (2) & 120.6 (4) \\ 109.1 (2) & 108.8 (2) & 128.7 (4) \\ 4.3 (10) & 2.6 (5) & 9.7 (20) \\ \hline ({\rm V})^a & ({\rm VI})^b & ({\rm VII})^b \\ 1.728 (2) & 1.734 (4) & 1.733 (4) \\ 1.366 (3) & 1.363 (4) & 1.365 (6) \\ 1.468 (2) & 1.467 (3) & 1.461 (5) \\ 111.2 (1) & 111.0 (2) & 110.7 (3) \\ 119.0 (2) & 119.1 (2) & 120.3 (3) \\ 129.7 (2) & 129.9 (2) & 129.0 (3) \\ 56.8 (2) & 45.1 (3) & 61.1 (6) \\ \end{array}$

Notes: (a) This work. (b) Zimmer et al. (1993).

Data collection: *SDP* (Frenz, 1983). Cell refinement: *SDP*. Data reduction: *SDP*. Program(s) used to solve structure: *MULTAN* (Main *et al.*, 1982). Program(s) used to refine structure: *SDP*. Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *PARST* (Nardelli, 1983).

We thank Servizio Italiano di Diffusione Dati Cristallografici del CNR (Parma) for access to the Cambridge Data Files.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1119). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Benincori, T., Brenna, E., Sannicolò, F., Moro, G., Pilati, T., Pitea, D., Zotti, G. & Zerbi, G. (1995). J. Chem. Soc. Chem. Commun. Submitted.
- Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP User's Guide. Version of 6 January 1983. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Koster, P. B., van Bolhuis, F. & Visser, G. J. (1970). Acta Cryst. B26, 1932–1939.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Roncali, J. (1992). J. Chem. Rev. 92, 711-738
- Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, p. 411. London: Macmillan.
- Zimmer, H. Amer, A., Shabana, R., Ho, D., Mark, H. B. Jr., Sudsuansri, K. & Striley, C. (1993). Acta Chem. Scand. 47, 184– 190.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 697-700

Preparation and Structural Characterization of the Charge-Transfer Complex $(12[ane]S_4.I_2)_{\infty}$ (12[ane]S₄ = 1,4,7,10-Tetrathiacyclododecane)

PAUL K. BAKER AND SHARMAN D. HARRIS

Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, Wales

MARCUS C. DURRANT, DAVID L. HUGHES AND RAYMOND L. RICHARDS

JIC Nitrogen Fixation Laboratory, University of Sussex, Brighton BN1 9RQ, England

(Received 14 February 1994; accepted 8 September 1994)

Abstract

The X-ray crystal structure of the new addition compound $(12[ane]S_4.I_2)_{\infty}$, $C_8H_{16}S_4.I_2$, is reported. The I_2 moieties bridge symmetrically between thioether groups; the I—I and S···I bond lengths of 2.736(1) and 3.220(3) Å, respectively, indicate relatively weak charge transfer. The nature of the interaction has been probed by semi-empirical molecular-orbital calculations using the PM3 method.

Comment

The interaction of thioethers with diiodine constitutes a textbook example of charge-transfer (CT) complexation (Downs & Adams, 1973); the nature of the $S \cdots I_2$ interaction was first characterized in the 1960s by X-ray structural analyses of (PhCH₂)₂S.I₂ (Rømming, 1960) and 6[ane]S₂.(I₂)₂ (Chao & McCullough, 1960) (6[ane]S₂ = 1,4-dithiane), and other examples of such complexes have appeared from time to time (Herbstein *et al.*, 1986; Tipton, Lonergan, Stern & Shriver, 1992). Very recently, interest in this area has been rekindled by the structural characterization of complexes of diiodine with the macrocyclic thioether 1,4,7-trithiacyclononane, *viz.* (9[ane]S₃)₂.(I₂)₄ (Blake, Gould, Radek & Schröder, 1993) and 9[ane]S₃.(I₂)₃ (Cristiani *et al.*, 1993).

In this paper we describe the preparation and X-ray crystal structure of a complex of a larger macrocycle, $(12[ane]S_4.I_2)_{\infty}$ $(12[ane]S_4 = 1,4,7,10-$ tetrathiacyclododecane). This complex differs from previous examples in that the diiodine bridges symmetrically between two macrocycles in an unusually weak CT interaction. In order to probe the differences in electronic structures in going from terminal $R_2S\cdots I$ —I to bridging $R_2S\cdots I$ —I···S R_2 , we have carried out semiempirical molecular-orbital calculations on Me₂S.I₂ and